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Sound generated by aerodynamic sources
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An analysis is made of sound generation by aerodynamic sources near an acoustically
compact body (or compact surface feature on a large boundary) that can deform in
an arbitrary manner. It is shown how such problems can be investigated by simple
extension of the compact Green’s function used in the treatment of compact rigid
bodies. It is known that this method can furnish rapid and accurate predictions of
sound generated by flows with extensive, non-compact distributions of sources in
cases where a numerical treatment requires at best tens or hundreds of hours of
CPU time. Illustrative applications are made to study (i) the sound generated by a
nominally rigid circular lamina of time-dependent radius held in an irrotational mean
stream, and (ii) the production of voiced speech by vorticity interacting with a simple
model of the vocal folds. In case (ii), it appears that predictions are represented well
by a quasi-static approximation that permits the particular results of this paper and
previous investigations to be generalized to arbitrarily configured folds.

1. Introduction
Unsteady vorticity in a nominally homogeneous compressible fluid is a source of

aerodynamic sound (Lighthill 1952; Howe 1998, 2003). In low-Mach-number flows, it
is often permissible to regard the motion as homentropic, and to neglect the convection
of sound by the flow. Lighthill’s (1952) equation for the production of sound then
assumes the form (

1

c2
o

∂2

∂t2
− ∇2

)
B = div(ω ∧ v), (1.1)

where co is the mean speed of sound, which can be regarded as uniform and constant,
and B is the total enthalpy defined in homentropic flow by

B =

∫
dp

ρ
+ 1

2
v2, (1.2)

where v is the velocity, ω =curl v the vorticity, and ρ ≡ ρ(p) is the density.
In the absence of vorticity and moving boundaries, Bernoulli’s equation implies

that B is constant throughout the flow, and may be assumed to vanish. Equation (1.1)

† Author to whom correspondence should be addressed: mshowe@bu.edu



368 M. S. Howe and R. S. McGowan

dS

O S S ′

ω ≠ 0

Figure 1. Vortex sources adjacent to a moving solid body S with enclosing
control surface S ′(t).

implies that fluctuations in B propagate as sound away from regions of unsteady
vorticity within which the divergence of the Lamb vector ω ∧ v represents the
effective aeroacoustic source. The equation usefully determines the sound when
div(ω ∧ v) is prescribed or has been determined by preliminary analysis. In the
exterior propagation zone, the motion is irrotational and described by a velocity
potential ϕ(x, t), where Bernoulli’s equation implies that B = −∂ϕ/∂t . The equations
of motion may be linearized in the far field, where the acoustic pressure is determined
by p ≈ −ρo∂ϕ/∂t = ρoB .

The efficiency with which aerodynamic sound is produced is strongly influenced
by the presence of solid boundaries in the source flow (Curle 1955; Crighton &
Leppington 1971; Crighton 1975a, b). In an unbounded medium, a vortex source
is equivalent to a quadrupole for which the amplitude of the acoustic pressure
p ∼ O(ρov

2M2), where M ∼ v/co � 1 is a characteristic Mach number. When M is
small, the amplitude is increased by a factor ∼1/M for sources in the vicinity of a
solid boundary S, say (figure 1), because unsteady forces induced on S by the vorticity
are generally equivalent to more efficient dipoles for which p ∼ O(ρov

2M).
Dipoles are particularly important in noise-control problems involving moving

boundaries S (Beranek & Vér 1992; Howe 1998; Howe et al. 2006). Predictions
in such cases usually depend on the introduction of an acoustic Green’s function
G(x, y, t, τ ) satisfying(

1

c2
o

∂2

∂τ 2
− ∂2

∂y2
j

)
G = δ(x − y)δ(t − τ ), G = 0 for τ > t, (1.3)

together with suitable conditions on a moving material control surface S ′ ≡ S ′(t)
within the fluid that just encloses the physical boundary S.

The usual requirement is that the normal derivatives ∂G/∂xn, ∂G/∂yn should
vanish respectively for x and y on S ′. The application of Green’s theorem and the
radiation condition to (1.1) and (1.3) then enable the solution of (1.1) to be expressed
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in the form (Baker & Copson 1969; Landau & Lifshitz 1987; Crighton et al. 1992;
Howe 1998)

B(x, t) = −
∮

S′(τ )

G(x, y, t, τ )
∂B

∂yj

( y, τ ) dSj ( y) dτ+

∫
G(x, y, t, τ )

∂

∂yj

(ω∧v)j ( y, τ ) d3 y dτ,

(1.4)

where the integration is taken over all values of the ‘retarded time’ −∞ <τ <+ ∞, the
surface integral is over S ′(τ ) (with surface element dS directed into the fluid ‘outside’
S ′(τ )), and the volume integral is over the external region of the fluid occupied by the
vortex sources.

Integration by parts permits the final integral on the right-hand side to be replaced
by

−
∮

S′(τ )

G(x, y, t, τ )(ω ∧v)j ( y, τ ) dSj ( y) dτ −
∫

(ω ∧v)j ( y, τ )
∂G

∂yj

(x, y, t, τ ) d3 y dτ. (1.5)

When this is substituted into (1.4), the remaining surface integrals are simplified as
follows. Write the momentum equation in Crocco’s form (Howe 1998)

∂v

∂t
+ ∇B = −ω ∧ v − ν curl ω, (1.6)

where ν is the kinematic viscosity. Viscosity can usually be ignored in ‘noisy’ high-
Reynolds-number flows. For this reason, the contribution to (1.6) from the bulk
viscosity has been discarded, because its effect is small everywhere. However, the
shear viscosity is responsible for possibly significant frictional forces on S and is
therefore retained, but in doing so it is also assumed at low Mach numbers that ν =
constant.

Thus, taking account of these remarks and the relations (1.5) and (1.6), and taking
the limit in which the control surface S ′ shrinks down onto S, (1.4) is found to reduce
to

B(x, t) = −
∫

(ω ∧ v)j ( y, τ )
∂G

∂yj

(x, y, t, τ ) d3 y dτ

+ ν

∮
S(τ )

ω( y, τ ) ∧ ∂G

∂ y
(x, y, t, τ ) · dS( y) dτ

+

∮
S(τ )

G(x, y, t, τ )
∂vj

∂τ
( y, τ ) dSj ( y) dτ, (1.7)

where B(x, t) ≈ p(x, t)/ρo in the linear acoustic region, far from the sources.
The first integral represents the sound generated by vortex sources within the fluid-

including the influence of the solid surface S, whose presence determines the functional
form of G(x, y, t, τ ). The surface integral involving ν supplies the contribution from
frictional forces on S. The final term accounts for an unsteady normal velocity on S:
the limit S ′ → S therefore implies that sound is produced by a distribution of surface
monopoles represented by unsteady motions of S.

In an important class of practical problems the boundary S, or some prominent
geometrical feature of S, is acoustically compact, that is, small compared to the
wavelength of the sound produced by the motion. For rigid bodies, the dominant
source is then of dipole type and the sound can be computed accurately from (1.7)
when S is stationary or in uniform or accelerated rectilinear motion by replacing
G(x, y, t, τ ) by its compact approximation (Howe 1975, 1998).
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The purpose of this paper is to show how the method of compact Green’s
function can be applied to compact bodies (or compact surface elements) in arbitrary
low-Mach-number motion, including situations where the shape and volume of the
body change with time. The general case of free-space radiation in three dimensions
is discussed in § 2. It is illustrated (§ 3) by the example of sound generation by a
stationary, nominally rigid, disk-shaped lamina of time-dependent radius due to the
action of Coanda edge-flow suction forces in the presence of a steady mean irrotational
flow, for which the validity of our conclusions is easily checked by alternative
means.

Extension is made in § 4 to study sound generation in a duct of compact cross-
section by sources in the vicinity of a deformable contraction. The compact Green’s
function for this configuration is used in §§ 5 and 6 to investigate the aeroacoustics of
‘voiced speech’ (Fant 1960; Flanagan 1972; Stevens 1998), that is, the mechanism of
sound generation by the vocal folds of the larynx. The subject has been investigated
numerically (Zhao et al. 2002; Hofmans et al. 2003; Duncan, Zhai & Scherer 2006)
by modelling the vocal tract as a uniform waveguide divided into two sections at
the glottis, the opening of variable width between the two vocal folds. ‘Voicing’
occurs when high pressure in the lungs opens the glottis producing a mean flow
and inducing quasi-periodic vibrations of the folds. The vibration is accompanied
by vortex shedding, and the generated sound can be attributed to a combination
of vortex-induced dipoles (associated with the drag on the folds) and a monopole
governed by small volumetric changes of the flexing vocal fold structure.

2. Compact deformable bodies
2.1. The compact Green’s function

Consider the case in which the surface S of figure 1 is acoustically compact and is
either stationary or executing small-amplitude translational oscillations. The leading-
order approximation to the radiation field (1.7), i.e. the solution that is correct to
terms of monopole and dipole order, can be evaluated by means of the following
compact approximation for G(x, y, t, τ ) (Howe 1975, 1998, 2003):

G(x, y, t, τ ) =
1

4π|X − Y |δ
(

t − τ − |X − Y |
co

)
, (2.1)

where X, Y are, respectively, representations in terms of x and y of the Kirchhoff
vector

X = x − ϕ∗(x), Y = y − ϕ∗( y). (2.2)

The j th component ϕ∗
j is defined to equal the velocity potential (vanishing at infinity)

of the incompressible flow that would be produced by rigid-body motion of S at
unit speed in the j -direction. Therefore, the vector components Xj (x) and Yj ( y) can
be interpreted as the velocity potentials of incompressible flow past the stationary
S having unit speed in the j -direction at large distances from S. The representation
(2.1) is applicable provided at least one of the points x, y lies in the acoustic far field
of S (see Howe 1998 for further discussion).

The compact approximation is expressed in the form (2.1) in order that it shall
reduce to the free-space Green’s function (which determines the solution (1.7) in the
absence of the boundary S) when X and Y reduce, respectively, to x and y. In
applications, (2.1) must first be expanded correct to dipole order to furnish explicit
predictions. Thus, when the origin O and the source point y are both near S, the
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observation point x must be taken to be in the acoustic far field where |X | ≈ |x| � |Y |,
and

G(x, y, t, τ ) ≈ 1

4π|x|δ
(

t − τ − |x|
co

)
+

xiYi

4πco|x|2 δ′
(

t − τ − |x|
co

)
, |x| → ∞, (2.3)

where the prime denotes differentiation with respect to t . The first term in this formula
does not depend on the source position y, and determines the monopole component
of the sound; the second represents the dipole. The question of which of these terms
dominates the far field depends on the properties of the source terms in the integrands
of (1.7).

2.2. Compact body in arbitrary, deformable motion

The approximation (2.1) is also applicable to problems involving a compact body
S in arbitrary, deformable motion. This is readily verified by a simple modification
of the ‘Rayleigh matching’ argument used in the proof of (2.1) (Howe 1998), and is
similar to that given below in § 4 for sound generation in a deformable wave guide. In
applications, account must be taken of the time-dependence of the Kirchhoff vectors
Xj ≡ Xj (x, t), Yj ≡ Yj ( y, τ ), each of which represents a uniform potential flow past S

defined by its instantaneous position and shape.
The procedure is illustrated well by consideration of the final surface integral in

the general solution (1.7). The monopole component of the sound is governed by the
first term on the right-hand side of (2.3), which gives

1

4π|x|

∮
S(τ )

δ

(
t − τ − |x|

co

)
∂vj

∂τ
( y, τ ) dSj ( y) dτ =

1

4π|x|

[
∂

∂t

∮
S

v · dS −
∮

S

(div v)v · dS
]

≈ 1

4π|x|

[
∂

∂t

∮
S

v · dS
]

, (2.4)

where the square brackets denote evaluation of the contents at the retarded time
t − |x|/co, and the divergence term is dropped because it is O(M2) � 1 relative to the
first in the low-Mach-number source region.

Similarly, the second term in (2.3) supplies the dipole

xi

4πco|x|2

∮
S(τ )

δ′
(

t − τ − |x|
co

)
Yi( y, τ )

∂vj

∂τ
( y, τ ) dSj ( y) dτ

=
xj

4πco|x|2
∂

∂t

[
∂

∂t

∮
S

Yjv · dS −
∮

S

(
∂Yj

∂t
+ div (Yjv)

)
v · dS

]

≈ xj

4πco|x|2
∂

∂t

[
∂

∂t

∮
S

Yjv · dS −
∮

S

DYj

Dt
v · dS

]
. (2.5)

The remaining integrals in (1.7) involve only the term in Yj ( y, τ ) of (2.3). Making the
substitution and combining with (2.4) and (2.5) we obtain the following representation
of the sound in the far field, where B = p/ρo,

p(x, t) ≈ ρo

4π|x|

[
∂

∂t

∮
S

v · dS
]

+
ρoxj

4πco|x|2
∂

∂t

[
∂

∂t

∮
S

Yjv · dS −
∮

S

DYj

Dt
v · dS

+ ν

∮
S

ω ∧ ∂Yj

∂ y
· dS( y) −

∫
(ω ∧ v) · ∂Yj

∂ y
d3 y

]
, |x| → ∞. (2.6)
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Figure 2. Generation of sound by a thin disk of time-dependent radius a(t) placed
broadside-on to a uniform irrotational mean stream.

This approximation is correct to dipole order in a multipole expansion of the
far field. The first term on the right represents omnidirectional monopole radiation
produced by volumetric pulsations of the body S. The remaining terms are dipoles
and are nominally smaller by a factor ∼O(M), but they become the dominant part
of the acoustic field when the volume of the deforming solid is either constant or
changes by only a small amount.

3. Sound produced by a disk of time-dependent radius
Consider an acoustically compact rigid disk of infinitesimal thickness whose radius

a = a(t) is oscillating about some mean value with arbitrary amplitude. The disk is
placed broadside-on to a uniform mean stream of speed U , where M = U/co is small.
Dipole sound is produced as a result of vortex shedding from the disk and because
of the fluctuations in disk size. However, there is no monopole radiation because the
disk is a deformable body whose volume does not change. The mechanism of sound
production shares some similarities with that of voiced speech considered in §§ 5
and 6. In particular, it involves a change in the geometrical size of the radiating
structure with no change of volume, or at least only a very small change in volume in
the case of the vocal folds. For the present, we wish to examine the influence on the
sound of the variable radius and therefore confine attention to the case of an ideal
fluid where vortex shedding does not occur and the mean flow is irrotational. Such a
flow is singular at the edge of the disk where the infinite velocity produces the suction
force required to turn the flow around the sharp corner – a ‘Coanda effect’. It will be
seen that it is the rate of working of the unsteady component of this Coanda edge
force that is responsible for the generation of sound.

Take the origin of coordinates x = (x1, x2, x3) at the fixed location of the centre of
the disk, with the x1 axis normal to the disk and in the direction of the mean flow
(figure 2). Then the mean flow velocity is U∇X1(x, t) where X1 is the component in the
x1 direction of the Kirchhoff vector which, when the coordinate axes are orientated
as in figure 2, is given by

X1 = x1 +
2a sgn(x1)

π

∫ ∞

0

(
sin(ξa)

ξa
− cos(ξa)

)
exp(−ξ |x1|)J0(ξr) dξ

ξ
,

r =
√

x2
2 + x2

3 ,

X2 = x2, X3 = x3,

⎫⎪⎪⎬
⎪⎪⎭ (3.1)

where a = a(t) and J0 is the Bessel function of order zero.
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For future reference we note the following asymptotic approximations

X1 ∼ 2
√

2a

π
Re

(
exp(iπ/4)

√
z − ia

)
, z ∼ ia, z = x1 + ir, (3.2a)

X1 ∼ x1

(
1 +

2a3

3π|x|3

)
, |x| � a, (3.2b)

X1 = ±2
√

a2 − r2

π
, x1 → ±0, r < a. (3.2c)

The streamline pattern defined by X1(x, t) is qualitatively similar to that for potential
flow in the normal direction past a thin strip, as illustrated in figure 3.6.4 of Howe
(2003).

We use (2.6) to calculate the sound in the far field of the disk. Because the volume
of the disk always vanishes and ω = 0, only the first two surface integrals in the dipole
term can possibly make a non-trivial contribution. However, the normal component of
velocity vanishes on the front and back faces of the disk (where v · dS ≡ 0). This means
that any contribution to the integrals must be a consequence of singular behaviour
of the integrands at the edge of the disk. The potential flow edge behaviour of (3.2a)
indicates, in fact, that

p(x, t) ≈ − ρoxj

4πco|x|2
∂

∂t

[∮
S

DYj

Dt
v · dS

]
= − ρox1

4πco|x|2
∂

∂t

[∮
S

U (∇Y1)
2v · dS

]
(3.3)

because (∇Y1)
2 ∼ O(1/|z − ia|) near the edge. The entire contribution to the last

integral is from the immediate vicinity of the edge, where the normal component
of velocity is ȧ(t) = da/dt (see figure 2). It is evaluated by the method described by
Batchelor (1967, equation (6.5.4)) for calculating suction force at a sharp edge, which
yields

p(x, t) ≈ −2ρoM cos θ

3π|x|

[
d2

dt2
(a3)

]
t−|x|/co

, |x| → ∞, (3.4)

where θ is the angle shown in figure 2 between the radiation direction and the
positive x1 axis. This is a characteristic dipole field whose amplitude and frequency
are determined by the time rate of change of the disk radius. Observe that there is
no requirement that the overall amplitude of the radial variations should be small,
although the frequency should be small enough to ensure that the disk remains
acoustically compact.

The validity of (3.4) can be confirmed by the following alternative analysis, based
on the far-field approximation (3.2b), which shows that the velocity potential in the
hydrodynamic far field of the disk is given to dipole order by

ϕ0 = UX1 ∼ Ux1

(
1 +

2a3

3π|x|3

)
, |x| � a. (3.5)

The pressure p(x, t) is therefore

p(x, t) = −ρo

∂ϕ0

∂t
≈ − 2ρoU

3π

∂

∂t

(
x1a

3

|x|3

)
≡ 2ρoU

3π

∂2

∂x1∂t

(
a3(t)

|x|

)
, |x| � a. (3.6)
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This formula is extended into the acoustic far field by replacing a(t) by a(t − |x|/co)
(Howe 2003, § 5.6), to obtain

p(x, t) ≈ 2ρoU

3π

∂2

∂x1∂t

(
a3(t − |x|/co)

|x|

)
∼ −2ρoMx1

3π|x|2

[
d2

dt2
(a3)

]
t−|x|/co

, |x| → ∞,

(3.7)
which is equivalent to (3.4).

Alternatively, using ϕ0 = UX1 and the surface relation (3.2c), we find that the
unsteady drag (in the + x1 direction) experienced by the disk is

F (t) = 2π

∫ a(t)

0

[
ρo

∂ϕ0

∂t

]+0

x1=−0

r dr = 8ρoUaȧ

∫ a

0

r dr√
a2 − r2

=
8ρoU

3

d

dt
(a3).

The radiation produced by this force is given by (Curle 1955; Howe 2003, § 5.4)

p(x, t) ≈ 1

4π|x|
∂F

∂x1

(
t − |x|

co

)
∼ − x1

4πco|x|2

[
dF

dt

]
t−|x|/co

, |x| → ∞, (3.8)

which is again equivalent to (3.4).
The acoustic energy flux should equal the rate of working of the suction force at the

edge of the disk. To verify this we first calculate the mean acoustic power radiating
through the surface S∞ of a large sphere of radius R∞ centred on the disk, namely

Π =

∮
S∞

〈p2〉 dS

ρoco

=
16ρoM

2

27πco

〈∣∣∣∣ d2

dt2
(a3)

∣∣∣∣
2
〉

, (3.9)

where the angle brackets denote a time average and (3.4) has been used for p.
Next, using (3.4) and the far-field relation p = −ρo∂ϕ/∂t , it follows by expanding

in powers of the ‘compactness operator’

|x|
co

∂

∂t

that

ϕ − ϕ0 = − U

3πc2
o

x1

|x|
d2

dt2
(a3) +

2Ux1

9πc3
o

d3

dt3
(a3) + · · · s, |x| � a, (3.10)

where a3 ≡ a3(t) and ϕ0 is the the incompressible component (3.5) of the potential.
Near the disk ϕ = U∇X1 + ϕ′, where ϕ′ is the hydrodynamic near-field representation
of the terms on the right-hand side of (3.10). Now, the mean rate of working of the
suction force is〈∮

S

− 1
2
ρo(∇ϕ)2v · dS

〉
≈

〈
−ρoU

∮
S

(∇X1 · ∇ϕ′)v · dS
〉

.

However, in the near-field representation of ϕ′, only the term corresponding to the
second of the terms on the right-hand side of (3.10) (which represents a uniform flow
in the x1 direction) gives a non-zero average, namely

−2ρoM
2

9πco

〈
d3

dt3
(a3)

∮
S

(∇X1)
2v · dS

〉
= −2ρoM

2

9πco

〈
d3

dt3
(a3) × 8

3

d

dt
(a3)

〉

=
16ρoM

2

27πco

〈∣∣∣∣ d2

dt2
(a3)

∣∣∣∣
2
〉

,

which is just equal to the acoustic power (3.9).
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Figure 3. Schematic configuration of a duct with a localized, deformable contraction. The
wave directions are for the direct compact Green’s function GD calculated for |x| � h and for
y in the immediate neighbourhood of the contraction.

4. Duct with a deformable contraction
We now turn our attention to the problem illustrated schematically in figure 3 of

sound production by sources in a nominally uniform duct with a compact deformable
contraction. It is assumed that the duct is acoustically rigid everywhere except in the
neighbourhood of the contraction, and that the characteristic frequencies are small
enough to admit only of plane wave propagation in the duct. In what follows the
configuration of figure 3 will be applied to study ‘voiced speech’: the deformable
contraction will be used to model the vocal folds and glottis of the human larynx.
First, it is necessary to determine the Green’s function defined as in § 2, with vanishing
normal derivative on the duct walls and on the instantaneous surface S(x, t) of the
contraction.

Acoustic sources in the speech problem are at points y close to the contraction,
and it is required to determine the sound radiated to distant points x in the uniform
sections of the duct. To study the mechanism of sound production, it is unnecessary
to account for reflections from the distant ends of the duct, which can therefore be
taken to be infinite in both directions. There is no limitation on the cross-sectional
shape of the uniform section of the duct, but numerical predictions are given in § 5 for
a rectangular duct of span 
3 and ‘vertical’ height 2h (where 
3 ∼ O(2h), see figure 3),
and it will be convenient to frame the discussion in terms of this geometry.

4.1. Green’s function

Take the coordinate origin at a point on the duct axis at the ‘centre’ of the contraction,
with the x1 axis parallel to the duct axis and directed to the right in figure 3. Consider
first the case where the observer at x is in the distant acoustic region to the left-hand
side of the contraction (x1 large and negative, as in the figure). Green’s function
G(x, y, t, τ ) defined by (1.3) propagates as a function of ( y, τ ) as an ‘advanced
potential’ that collapses into the singularity at (x, t) at time τ = t and vanishes for
τ > t . Its calculation is simplified, however, by the observation that G(x, y, t, τ ) is the
adjoint of the solution GD , say, of the direct problem of the production of sound by
a point source at (x, τ ) when the sound is regarded as propagating as a function of
( y, t).

Let GD
0 be the solution of the direct problem when the contraction is absent, for a

uniform duct. Then GD can be determined by examining the interaction of GD
0 with
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the contraction. The calculation is particularly straightforward when GD is required
for applications at low frequencies, when only plane waves can propagate in the
uniform duct, because only the plane wave component of GD

0 is then relevant, namely

GD
0 =

co

2AH

(
t − τ − |x1 − y1|

co

)
, (4.1)

where A =2h
3 is the cross-sectional area of the uniform section of the duct, and H

is the Heaviside step function.
The combination of GD

0 and of waves produced when the disturbance (4.1) impinges
on the contraction determines GD in the approximation in which the contraction is
compact. In this limit, the functional forms of GD at points y in the acoustic far
field of the contraction and within the contraction zone can be derived by matching
alternative representations of GD in two regions of overlap on either side of the
contraction, where both representations are applicable.

4.2. The compact approximation

Suppose first that x1 < 0 and is in the acoustic far field (see figure 3). When y1 is
to the right of the source, but several duct diameters to the left of the contraction
(x1 <y1 � 0), GD consists of the wave (4.1) travelling towards the contraction and a
plane wave f reflected at the contraction, i.e.

GD =
co

2AH

(
[t] − τ − y1

co

)
+ f

(
[t] − τ +

y1

co

)
where [t] = t +

x1

co

. (4.2)

The disturbance to the right of the contraction consists of the outgoing wave

GD = g

(
[t] − τ − y1

co

)
, y1 � 0. (4.3)

Near the contraction, the long-wavelength motion can be regarded as incompressible,
and we can put

GD = FD(t) + GD(t)Y1( y, t), y ∼ O(h), (4.4)

where FD, GD are auxiliary functions and Y1 is the (one-dimensional) Kirchhoff
vector for the contraction at time t , defined such that ∂Y1/∂y1 → 1 as y1 → ±∞. It
is a solution of Laplace’s equation satisfying ∂Y1/∂yn = 0 on the deformable surface
S(t) of the contraction, and can be normalized such that

Y1 ∼ y1 ± 
(t)

2
, y1 → ±∞, (4.5)

where 
(t) is the time-dependent Rayleigh ‘end correction’ of the contraction (Rayleigh
1945), given by


(t) =

∫ ∞

−∞

(
∂Y1

∂y1

( y, t) − 1

)
dy1. (4.6)

The integration is along any path parallel to the duct axis passing through the
contraction.

The four unknown functions f, g, F, G are found by expanding in powers of y1/co

and matching the formulae (4.2), (4.4) and (4.3), (4.4) correct to O(y1) in the respective
common hydrodynamic regions of overlap −co/ω � y1 � −h and h � y1 � co/ω to
the left and right of the contraction, where ω ∼ ∂/∂t is a characteristic frequency. This
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procedure supplies the four equations

co

2AH ([t] − τ ) + f ([t] − τ ) = FD(t) − 1
2
(GD
)(t),

−co

2A δ ([t] − τ ) + f ′ ([t] − τ ) = coGD(t),

g ([t] − τ ) = FD(t) + 1
2
(GD
)(t),

g′ ([t] − τ ) = −coGD(t),

⎫⎪⎪⎪⎪⎪⎪⎬
⎪⎪⎪⎪⎪⎪⎭

(4.7)

where a prime denotes differentiation with respect to the argument. By eliminating f

and g, the equations determining FD and GD are obtained in the form

∂FD

∂t
=

co

2A δ ([t] − τ ) ,
∂

∂t

(
GD


)
+ 2coGD = − co

A δ([t] − τ ). (4.8)

Reverting now to the adjoint problem, we find for y in the vicinity of the contraction
that

G(x, y, t, τ ) ≈ F(τ ) + G(τ )Y1( y, τ ), (4.9)

where F(τ ), G(τ ) are solutions of the adjoints of (4.8):

∂F
∂τ

= − co

2A δ([t] − τ ), 
(τ )
∂G
∂τ

− 2coG =
co

A δ([t] − τ ). (4.10)

A similar set of equations is obtained when x1 > 0, in the duct to the right of the
contraction. In both cases their solutions determine the following explicit form of
(4.9) (for y ∼ h in the vicinity of the contraction)

G(x, y, t, τ ) ≈ co

2AH ([t] − τ ) +
cosgn(x1)Y1( y, τ )


([t])A H ([t] − τ )

× exp

(
−

∫ [t]

τ

2codξ


(ξ )

)
, y ∼ O(h), (4.11)

where [t] = t − |x1|/co.
The end correction 
 typically exceeds the duct width 2h, and becomes very

large when the minimum distance between opposite walls of the contraction is
small. The exponential function in the second term of (4.11) decreases rapidly when
the acoustic travel distance co([t] − τ ) exceeds 
, which provides a time scale for
acoustically compact transients. In many applications of (4.11), however, transients
are unimportant, inasmuch as typical compact sources near the contraction are
effectively unchanged over time intervals ∼
/co. We can then use the relation

lim
ε→+0

1

ε
H (−x)ex/ε = δ(x)

to reduce (4.11) to the more conventional form

G(x, y, t, τ ) ≈ co

2A

{
H

(
t − τ − |x1|

co

)
+

sgn(x1)

co

Y1( y, τ )δ

(
t − τ − |x1|

co

)}

≈ co

2AH

(
t − τ − |x1 − Y1|

co

)
, |x1| → ∞. (4.12)
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fot = 0(a)

(b) 1/6

(d) 1/2

(e) 2/3

(f) 5/6(c) 1/3

Lung

Pressure

Figure 4. Illustrating the variations in the geometry of the vocal folds over one cycle at
intervals of 1/6 of a period according to the model of Zhao et al. (2002).

5. Voiced speech
5.1. The vocal folds and glottis

Voiced speech is produced by oscillations of the vocal folds induced by the application
of a nominally steady ‘subglottal’ pressure from the lungs caused by respiratory
musculature and passive elastic forces. Periodic vortex shedding from the ‘tips’ of the
folds and feedback of pressure fluctuations produced by the convecting vorticity, drive
the folds against elastic restoring forces into self-sustaining oscillations at frequencies
fo that rarely exceed 400 Hz for adult speakers (Flanagan 1972; Stevens 1998). The
glottis is therefore acoustically compact and the principal acoustic modes excited in
the vocal tract are in the form of plane progressive waves. Indeed, because the typical
glottis flow velocity v approaches 20–40 m s−1, the corresponding Strouhal number
foh/v (�1) is much too small to permit the interaction with acoustic cross modes by
mechanisms such as that mentioned by Boij & Nilsson (2003).

Figure 4 (adapted from Zhao et al. 2002) presents an idealized representation of
the motion during a complete cycle at intervals of one sixth of a period (1/fo). In the
simplest approximation the shape of the glottis in sections normal to the axis of the
vocal tract (the ‘duct’ axis) is a rectangle of fixed span 
3 and continuously variable
width (x1, t) (in the x2 direction of figure 3).

Voicing is often initiated with the glottis tightly closed and subject to a subglottal
over-pressure of about 10 cm of water (∼1 kPa) – muscular adjustment ensuring
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that this pressure is just sufficient to blow the folds apart. We shall model this
theoretically in an attempt to expose the roles of the different source mechanisms
by assuming that the motion starts with the arrival of a step pressure rise from the
lungs which, combined with the muscular adjustment, causes the folds to begin to
separate. Differences between different starting mechanisms affect only the shape of
the initial acoustic transients, which usually decay during a small fraction of the
vibration period.

When the step wave arrives (from the left in figure 4 and from x1 < 0 in figure 3)
the folds progressively separate and the glottis opens, initially forming a converging
channel as indicated in figure 4(b). The subsequent depictions figures 4(c)–4(f) of the
folds illustrate how separation is accompanied by a ‘rocking’ motion attributable to
structural waves moving over the surfaces (‘epithelia’) of the folds (Stevens 1998). A
constant over-pressure applied by the lungs causes the sequence of configurations in
figure 4 to repeat periodically – except that we have shown the ‘rest state’ (figure 4a)
to be one in which there is a small but finite glottal width (x1, t), in order to
conform with the numerical investigation discussed in § 6. The actual variation of
(x1, t) is determined by the simultaneous solution of equations of motion for
the fluid and for the elastic vocal folds. Zhao et al. (2002) circumvented the extra
complications presented by this combined system – thereby focusing attention on the
fluid mechanics of sound generation – by introducing the following empirical model
of the continuously variable glottal width during each cycle:

(x1, t) = 1
2
(D0 + Dmin + (D0 − Dmin) tanh(ŝ)) + Dmax [1 − tanh(ŝ)]

× ((x̂ + ĉ)β1(T ) − (x̂ − ĉ)β2(T )), (5.1)

where T = fot − [fot] is the fractional part of fot , the coordinate origin is taken on
the main axis of symmetry at the centre of the glottis in its rest state,

ŝ = b̂

(
|x̂| − 1

|x̂|

)
, x̂ =

x1

Dmax

, b̂ = 1.4, ĉ = 0.42, (5.2)

and

β1(T ) =

⎧⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎩

0, T � 1
9

0.244
{
1 − cos

[
9
4
π
(
T − 1

9

)]}
, 1

9
< T � 5

9
,

0.488, 5
9

< T � 6
9
,

0.244
{
1 + cos

[
3π

(
T − 6

9

)]}
, 6

9
< T < 1,

(5.3a)

β2(T ) = β1

(
T + 1

9

)
. (5.3b)

This model was used by Zhao et al. (2002) to investigate numerically voiced speech
produced in a circular cylindrical vocal tract of diameter D0 with an axisymmetric
glottis. The minimum and maximum diameters of the glottis were respectively
Dmin, Dmax , and characterize the respective situations in figures 4(a) and 4(d). We
shall also use the empirical representation (5.1)–(5.3), but adapt it to the rectangular
geometry discussed in § 4 by taking D0 = 2h, with the more realistic rectangular
glottis of span 
3 and width (x1, t), with minimum and maximum widths equal to
Dmin, Dmax respectively.

5.2. Voice production as a scattering problem

Let the incident over-pressure from the lungs consist of a step rise in pressure of
amplitude pI impinging on the glottis at t = 0. Then the corresponding incident total
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enthalpy wave BI can be written

BI ≡ BI

(
t − x1

co

)
=

pI

ρo

H

(
t − x1

co

)
. (5.4)

Put B = BI +Bs , where Bs is the field scattered at the glottis which has outgoing wave
behaviour at large distances from the glottis. When the argument leading to (1.7)
involving Green’s theorem and the radiation condition is applied in the present case
(with proper account taken of the contribution from the incident wave), we find

Bs(x, t) = −
∫

(ω ∧ v)j ( y, τ )
∂G

∂yj

(x, y, t, τ ) d3 y dτ

+ ν

∮
S( y,τ )

ω( y, τ ) ∧ ∂G

∂ y
(x, y, t, τ ) · dS( y) dτ

+

∮
S( y,τ )

G(x, y, t, τ )

(
∂vj

∂τ
+

∂BI

∂yj

)
( y, τ ) dSj ( y) dτ. (5.5)

In the final integral ∂v/∂τ +∂BI/∂ y ≡ ∂vs/∂τ , where vs is the scattered component
of velocity, and the term ∂BI/∂ y represents the ‘passive’ scattering of the incident
wave by the glottis geometry. To determine its contribution note from the definition
(2.2) that the condition ∂Y1/∂yn ≡ ∂{y1 − ϕ∗

1( y, τ )}/∂yn =0 on the instantaneous
surface S( y, τ ) of the glottal folds implies that

∂BI

∂yn

= − pI

ρoco

δ

(
τ − y1

co

)
∂ϕ∗

1

∂yn

≈ − pI

ρoco

δ(τ )
∂ϕ∗

1

∂yn

, (5.6)

provided that it is permissible to neglect variations in the retarded time y1/co within
the glottal region.

Then∮
S( y,τ )

G
∂BI

∂yj

( y, τ ) dSj ( y) dτ ≈ − pI

ρoco

∮
S( y,τ )

Gδ(τ )∇ϕ∗
1 · dS dτ

≡ − pI

ρoco

∮
S( y,τ )

G
∂

∂τ
(H (τ )∇ϕ∗

1) · dS dτ − pI

ρoco

∮
S( y,τ )

GH (τ )
∂

∂τ
(∇Y1) · dS dτ (5.7)

where G ≡ G(x, y, t, τ ). Because ∇Y1 · dS ≡ 0 on S, integration by parts reveals
that the final integral in (5.7) is a second-order quantity, involving the small normal
component of velocity on the vocal folds structure, and may therefore be discarded.

By recalling from (4.5) and the definition (2.2) that

ϕ∗
1( y, τ ) ∼ ∓
(τ )

2
as y1 → ±∞, (5.8)

where ∇ϕ∗
1( y, τ ) decays exponentially fast as |y1| → ∞ in the vocal tract, it follows

that∮
S( y,τ )

Y1

∂

∂τ
(H (τ )∇ϕ∗

1) · dS( y) = −
∫

div

(
Y1

∂

∂τ
(H (τ )∇ϕ∗

1)

)
d3 y

= −
∫

div

(
∇Y1

∂

∂τ
(H (τ )ϕ∗

1)

)
d3 y = A ∂

∂τ
(H (τ )
(τ )),

(5.9)
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and therefore that the first term on the second line of (5.7) yields∮
S( y,τ )

G
∂BI

∂yj

( y, τ ) dSj ( y) dτ ≈ −pI

ρo

sgn(x1)


([t])

∫ [t]

−∞

∂

∂τ
(H (τ )
(τ )) exp

(
−
∫ [t]

τ

2co dξ


(ξ )

)
dτ.

(5.10)
Using this result, and putting B =BI + Bs into (5.5), we may now express the

solution in the form

B(x, t) =
pI

ρo

{
H

(
t − x1

co

)
− sgn(x1)


([t])

∫ [t]

−∞

∂

∂τ
(H (τ )
(τ )) exp

(
−

∫ [t]

τ

2co dξ


(ξ )

)
dτ

}

−
∫

(ω ∧ v)j ( y, τ )
∂G

∂yj

(x, y, t, τ ) d3 y dτ + ν

∮
S( y,τ )

ω( y, τ ) ∧ ∂G

∂ y
(x, y, t, τ ) · dS( y) dτ

+

∮
S( y,τ )

G(x, y, t, τ )
∂vj

∂τ
( y, τ ) dSj ( y) dτ, [t] = t − |x1|

co

. (5.11)

The term

−pI

ρo

sgn(x1)


([t])

∫ [t]

−∞

∂

∂τ
(H (τ )
(τ )) exp

(
−

∫ [t]

τ

2co dξ


(ξ )

)
dτ

represents a transient response to the incident step rise in pressure. It decays rapidly to
zero after a retarded time ∼
/co, where 
 is the characteristic value of the glottis end-
correction following its impulsive opening. At later times – ignoring for the moment
the influence of the remaining integrated terms in (5.11) – the incident step pressure
wave can be said to be fully transmitted through the glottis without attenuation. In
the region x1 < 0 this term represents a transient reflected pressure pulse of width ∼


radiated back to the lungs.

5.3. Vortex sound

These transient motions dominate the scattered sound immediately after the arrival
of the step wave. The remaining integrals in (5.11) involving vorticity and surface
accelerations are initially small because, for example, vorticity must first be convected
into the flow after shedding from the folds by the very low-Mach-number glottal
mean flow. At later times, the flow just downstream of the glottis forms a jet of
nominally rectangular cross-section of span 
3 whose width is modulated by the
continuously varying width of the glottis. The jet is unstable and this ordered picture
is not maintained further downstream, where the flow becomes locally dominated by
turbulence and the formation of large vortical structures, but this actually occurs at
a sufficient distance from the glottis that the efficiency of sound generation during
breakdown is negligible. The strength of the vortex sound Bω, say, is governed by the
volume integral on the second line of (5.11), which can be evaluated in the forms

Bω = −
∫

(ω ∧ v)j ( y, τ )
∂G

∂yj

(x, y, t, τ ) d3 y dτ

≈ −cosgn(x1)

A
([t])

∫ [t]

−∞
exp

(
−

∫ [t]

τ

2codξ


(ξ )

)
dτ

∫ (
∂Y1

∂ y
· ω ∧ v

)
( y, τ ) d3 y (5.12a)

≈ −sgn(x1)

2A

[∫
∂Y1

∂ y
· ω ∧ v d3 y

]
t−|x1|/co

, (5.12b)

where the approximation (5.12b) is applicable provided the characteristic time ∼1/fo

of vortex formation satisfies fo
/co � 1 (i.e. the glottis is acoustically compact).
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fot = 1/3

Jet Uσ

Figure 5. Emerging jet modelled as a quasi-static free streamline flow with asymptotic jet
speed Uσ at stage (c) of figure 4. The majority of the ‘streamlines’ of the Green’s function
velocity potential Y1(x, t) cut the jet boundary typically within a distance downstream of the
glottis of the order of the glottal width.

Figure 5 illustrates the streamline structure of the ‘flow’ defined by the velocity
potential Y1 of figure 4(c). Sound is generated strongly (i.e. with dipole strength
as opposed to the much quieter quadrupole strength of free turbulence sources) in
regions where the streamline pattern varies rapidly, on scales comparable to those
of the vortex field. This is evidently the region just downstream of the glottis within
a distance equal roughly to the glottal width – further downstream, the streamlines
become uniformly spaced and parallel and ∇Y1 varies very slowly. The integration in
(5.12) can then be evaluated by holding ∂Y1/∂ y constant over the region occupied
by a coherent eddy, in which case

∫
ω ∧ v d3 y = 0 when the eddy is compact: under

these circumstances the sound generated by the eddy is of quadrupole type.
Figure 5 also illustrates the consequence of the hypothesis that the Reynolds

number based on the glottis length and flow velocity is large, so that vorticity shed
from the glottis is initially confined to ‘free streamlines’ at the edges of the jet. From
what has been said above, it is only necessary for this approximation to be adequate
within a distance of about one glottal width downstream, where the Green’s function
streamlines of the potential Y1 cut across the jet boundary. On this boundary, the flow
speed is constant and equal to Uσ , say, the asymptotic jet velocity predicted by free
streamline theory (Birkhoff & Zarantonello 1957; Gurevich 1965). Thus, for example,
along the upper free streamline of figure 5, the vorticity ω =Uσδ(s⊥)k where s⊥ is the
distance measured in the direction of the outward normal from the free streamline
and k is a unit vector out of the plane of the paper; the vorticity convection velocity
v = Uσ t/2, where t is a unit vector tangential to the free streamline flow. Hence,
because k ∧ t is the unit normal directed outwards from the jet, the contributions
from both edges of the jet can be combined to yield∫ (

∂Y1

∂ y
· ω ∧ v

)
( y, τ ) d3 y = 
3U

2
σ (τ )

∫ ∞

0

(
∂Y1

∂s⊥

)
s⊥=0

ds,

where s is the distance measured along a free streamline from the glottis. Now
2
3

∫ ∞
0

(∂Y1/∂s⊥)s⊥=0 ds = A, provided the asymptotic jet width is small compared to
the width 2h of the vocal tract. Therefore the vortex sound formulae (5.12a, b),



Sound generated by aerodynamic sources, with application to speech 383

respectively, become

Bω ≈ −cosgn(x1)

2
([t])

∫ [t]

−∞
U 2

σ (τ ) exp

(
−

∫ [t]

τ

2co dξ


(ξ )

)
dτ (5.13a)

≈ −sgn(x1)

4
U 2

σ (t − |x1|/co). (5.13b)

5.4. The monopole sound

Cyclic motion of the vocal folds is accompanied by small periodic changes in their
volume and the consequent production of a monopole component of sound that
radiates as equal waveforms in both directions away from the glottis. It will be
denoted by Bm , and is the principal contribution from the last integral in (5.11)
which, after discarding a smaller surface-generated dipole, yields

Bm ≈ co

2A

[∮
S

v · dS
]

t−|x1|/co

= −co
3

2A
∂

∂t

∫ ∞

−∞


(
y1, t − |x1|

co

)
dy1. (5.14)

5.5. Solution of the scattering problem

The remaining viscous term in (5.9) is associated predominantly with frictional drag
in the glottis. It becomes significant as the local Reynolds number becomes small,
when  → 0. We shall, however, ignore its contribution to the acoustic field because
the end-correction 
 → ∞ as the glottis closes, causing the overall radiation to drop
to zero. Hence, collecting together the principal contributors to the solution (5.11),
and putting B(x, t) =p(x1, t)/ρo in the acoustic region, we can write

p(x1, t) = pI

{
H

(
t − x1

co

)
− sgn(x1)


([t])

∫ [t]

−∞

∂

∂τ
(H (τ )
(τ )) exp

(
−

∫ [t]

τ

2co dξ


(ξ )

)
dτ

}

− ρocosgn(x1)

2
([t])

∫ [t]

−∞
U 2

σ (τ ) exp

(
−
∫ [t]

τ

2co dξ


(ξ )

)
dτ − ρoco
3

2A
∂

∂t

∫ ∞

−∞
(y1, [t]) dy1,

where [t] = t − |x1|
co

. (5.15)

The vortex sound term on the second line of this formula is actually approximated
well by (5.13b) at all times when its contribution is significant.

6. Numerical prediction of voiced sounds
6.1. Computation of the sound

The final monopole component of (5.15) is readily evaluated without further analysis
in terms of the vocal fold shape functions (5.1)–(5.3). To compute the remaining terms
in (5.15) we put

p′(x1, t) = pI

{
H

(
t − x1

co

)
− sgn(x1)


([t])

∫ [t]

−∞

∂

∂τ

(
H (τ )
(τ )

)
exp

(
−

∫ [t]

τ

2co dξ


(ξ )

)
dτ

}

−ρocosgn(x1)

2
([t])

∫ [t]

−∞
U 2

σ (τ ) exp

(
−

∫ [t]

τ

2co dξ


(ξ )

)
dτ. (6.1)
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For x1 > 0, the acoustic particle velocity of this outgoing wave is equal to p′(x1, t)/ρoco.
Let

U (t) = lim
x1→+0

p′(x1, t)

ρoco

(6.2)

be the limiting value of this velocity just to the right of the glottis in figure 3 (i.e.
x1 ∼ +0 so that [t] → t). Then by differentiating the corresponding limit of (6.1) we
find

d(
U )

dt
+ 2coU + 1

2
U 2

σ =
2pI

ρo

H (t). (6.3)

This is reduced to an ordinary differential equation for U (t) by defining m(t) to be the
minimum width of the glottis at time t . Then, because the flow in the neighbourhood
of the glottis can be considered to be incompressible,

Uσ ≈ AU


3σm

≡ 2hU

σm

, (6.4)

where σ is the contraction ratio of the jet, defined such that σUσ is the jet velocity at
the position of the glottal minimum, from where the free streamlines may be assumed
to emerge. Therefore, the near-field limit U of the acoustic particle velocity satisfies

d(
U )

dt
+ 2coU + 2

(
h

σm(t)

)2

U 2 =
2pI

ρo

H (t). (6.5)

The causal solution of this equation and the relation (6.4) determine the jet velocity
Uσ for substitution into the acoustic pressure formula (5.15). However, it is unnecessary
to do this because knowledge of the near-field value of the acoustic particle velocity
U (t) immediately supplies the following expressions for the overall acoustic pressure

p(x1, t) = ρocoU

(
t − x1

co

)
− ρoco
3

2A
∂

∂t

∫ ∞

−∞


(
y1, t − x1

co

)
dy1, x1 → +∞ (6.6a)

= pI

[
H

(
t − x1

co

)
+ H

(
t +

x1

co

)]
− ρocoU

(
t +

x1

co

)

− ρoco
3

2A
∂

∂t

∫ ∞

−∞


(
y1, t +

x1

co

)
dy1, x1 → −∞. (6.6b)

6.2. The electrical analogue

Our deduction of (6.5) from the nonlinear equations of motion supports the lumped-
parameter approximation originally used to study voicing (Fant 1960; Flanagan 1972).
This is based on an analogy that models the vocal system as an electrical transmission
line. The glottis is interpreted as a ‘monopole’ source of voiced sound whose strength
Q ≡ UA is the unsteady glottal volume flux, in terms of which (6.5) becomes

d(
Q)

dt
+ 2coQ +

2

A

(
h

σm(t)

)2

Q2 =
2pI

ρo

AH (t). (6.7)

The electrical analogy furnishes (Fant 1960)

ρo

dQ

dt
+ KQ2 = pA, (6.8)

in which an inductive load (first term on the left-hand side) and a nonlinear resistance
with ‘loss factor’ K are balanced against the pressure force pA across the glottis.
In detailed modelling with this equation, the value of the pressure load p should
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be adjusted to account properly for the acoustic admittances of the vocal tract on
each side of the glottis (Lighthill 1978). This is usually done indirectly by iteration
(Ananthapadmanabha & Fant 1982). In our case of (6.7), of course, no attempt has
been made to take account of vocal tract acoustics, in that we have assumed radiation
from the glottis to occur as in an infinite uniform duct, without reflections and other
interactions occurring at remote points in the vocal tract.

The conventional ‘monopole’ interpretation of the overall source of voiced speech
is obviously incorrect, but it does provide a convenient working model that is often
useful. Its existence has frequently been challenged (Teager & Teager 1983; McGowan
1988; Hirschberg 1992; Hofmans 1998; Barney, Shadle & Davies 1999; Mongeau et al.
1997; Shadle et al. 1999). McGowan (1988) argued that vorticity is produced at the
glottis and that a significant part of the generated sound must therefore be of dipole
origin, although he did not quantify his argument. The predominantly dipole character
of voiced sounds was established by the numerical work of Zhao et al. (2002), who
showed that the principal source is the fluctuating surface pressures on the vocal
folds.

6.3. Role of the unsteady end-correction

The end-correction 
(t) is evaluated for any configuration of the glottis using the
definition (4.6). To do this, it is generally necessary to determine the Kirchhoff vector
Y1(x, t) by numerical integration of ∇2Y1 = 0 subject to the conditions ∂Y1/∂x1 → 1 as
x1 → ± ∞ and ∂Y1/∂xn = 0 on the walls of the vocal tract and glottis (in the present
case, the problem is two-dimensional and it is simpler to solve Laplace’s equation
for the corresponding stream function, which assumes constant values on the walls).
When voicing occurs at a fixed frequency fo, the calculation must be performed for
a range of times over a typical period of duration 1/fo.

A preliminary picture of the expected dependence of 
 on time is easily obtained
for the case depicted in figure 6 where a ‘glottis’ of width (t) is formed by the gap
between rudimentary vocal folds of infinitesimal thickness, for which


(t)

h
=

4

π
ln

{
1

2

[
tan

(
π(t)

8h

)
+ cot

(
π(t)

8h

)]}
. (6.9)

By way of illustration we take

(t) =
1

2
(Dmax + Dmin) − 1

2
(Dmax − Dmin) cos(2πfot). (6.10)

The curves in figure 6(b) show the variation of 
(t)/h over a complete cycle for
the two cases in which minimum glottal widths are Dmin = 0.02h, 0.002h and when
Dmax/h= 0.4. In both cases 
 assumes its minimal values when  is large, and rises
to logarithmically large peak values at = Dmin . The maxima attained for a more
realistic glottis model, such as that defined by (5.1)–(5.3) (Zhao et al. 2002), can be
expected to be much larger, because the section of the infinite range of integration
in (4.6) within which ∂Y1/∂x1 is very large now extends over the finite axial length of
the glottis.

Figure 7 shows the corresponding variation of the end-correction when the vocal
folds are defined by our two-dimensional adaptation of the Zhao et al. (2002) model
(5.1)–(5.3) and

D0 ≡ 2h = 20 mm, Dmin = 0.1 mm, Dmax = 4 mm. (6.11)
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Figure 6. Variation of the end-correction 
(t) for the rudimentary two-dimensional glottis
formed by the slit between vocal folds of infinitesimal thickness defined by (6.9), for the two
cases where Dmax/h = 0.4, Dmin/h = 0.02 and 0.002.
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Figure 7. Variation of the end correction 
(t) during periodic motion of the glottis for
the Zhao et al. (2002b) model defined by equations (5.1)–(5.3) when D0 ≡ 2h = 20 mm,
Dmin = 0.1 mm, Dmax = 4 mm.

The general dependence of 
 on the glottal width is the same as in figure 6 for the
slit glottis, but the peak values attained when  tends towards closure are much
larger.
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Figure 8. The first two cycles of the pressure (6.6a) (−−−−) radiated from the glottis towards
the mouth (x1 > 0) for conditions (6.11) when f0 = 125 Hz and pI = 8 cm of water. Also
shown (- - - -) are the separate contributions from the vortex sound superimposed on the
mean transmitted pressure pI and the monopole sound (5.14). The dotted curve (· · ·) is the
quasi-static approximation (6.12).

The first three cycles of the pressure wave radiated towards the mouth (x1 > 0) for
this mode of oscillation of the vocal folds are determined by (6.6a) and illustrated in
figure 8 for an incident step pressure rise of pI = 8 cm of water (∼0.8 kPa; it being
also assumed that co =340 m s−1, ρo =1.23 kg m−3). The frequency fo =125 Hz, which
is typical of an adult male. The figure shows the overall predicted waveform of the
sound and the separate contributions from the vortex sound term ρocoU of (6.6a)
(superimposed on the mean transmitted pressure of amplitude pI ) and the monopole
(5.14). Equation (6.5) has been integrated using a fourth-order Runge–Kutta routine,
and the simplest approximation has been adopted in which the jet contraction ratio
σ = 1, although it should be realized that the detailed behaviour of σ depends in a
complicated way on Reynolds number and surface motion during the opening and
closing phases of the glottal motion (Krane & Wei 2006; Park & Mongeau 2007).

The rapid transient build-up of the transmitted sound to its periodic form occupies
a small fraction of a cycle, as indicated in the figure. The shape of this transient is
controlled by the first, differentiated term on the left-hand side of (6.5). When this
is discarded, the solution of the resulting quadratic equation yields the quasi-static
approximation

U (t) =
co

2

σm(t)

h

⎛
⎝
√(

σm(t)

h

)2

+
4pI

ρoc2
o

− σm(t)

h

⎞
⎠ , t > 0. (6.12)

The prediction of the sound using this formula in (6.6a) is plotted as the dotted
curve in figure 8. Evidently the neglect of the ‘inductive’ term in (6.5) results in a
prediction that lacks an initial transient but is otherwise a very close approximation
to the full predicted acoustic pressure. For practical purposes, therefore, it appears
that the quasi-static representation of the sound is quite adequate, a conclusion that
is consistent with experiments reported by Zhang, Mongeau & Frankel (2002) and
Park & Mongeau (2007).

Thus, the dominant influence of the variable end-correction 
(t) is actually confined
to the initial phases of sound generation. At later times, the transmitted pressure
remains positive and always exceeds about 0.1pI . This is because for a rectangular
glottis of elongated span 
3 ∼ O(h), the periodic reduction of its width to a minimum
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Figure 9. The quasi-static approximation to the pressure (6.6a) (−−−−) radiated from the
glottis towards the mouth (x1 > 0) for conditions (6.13) when f0 = 125 Hz and pI = 8 cm of
water. Also shown are the separate contributions from the vortex sound superimposed on the
mean transmitted pressure pI and the monopole sound (5.14).

value Dmin = 0.1 mm ( = 0.01h) is not sufficient to impede the transmission of acoustic
energy. This may be contrasted with the numerical results of Zhao et al. (2002)
for a similarly profiled glottis of circular cross-section, where the radiated pressure
consisted of a series of positive pulses whose amplitude effectively reduces to zero at
retarded times at which the glottis diameter is a minimum.

The net contribution from the monopole sound produced by volumetric changes
of the vocal folds alternates in sign as the folds expand and contract to modulate
the glottal width and furnishes a small correction to the overall wave profile. It is
clear from (6.6) that the amplitude of this source would be expected to increase
with frequency, although it is actually believed that an increase in the frequency
of oscillation of the folds is accompanied by other structural changes that tend to
oppose a corresponding increase in volume fluctuations (Stevens 1998).

6.4. The quasi-static approximation

In voiced speech, the periodic motions of the vocal folds usually include intervals in
which the glottis is closed, the exception being the special case of ‘breathy’ voicing
(Fant 1960; Flanagan 1972). The influence of closure is easily included in the quasi-
static approximation, whereas the corresponding change in the connectivity of the
three-dimensional space forming the vocal tract would require special treatment of
the full equation (6.5), involving a limiting process in which 
/h → ∞.

Thus, when conditions (6.11) for the two-dimensional Zhao et al. (2002) model
(5.1)–(5.3) are replaced by

D0 ≡ 2h = 20 mm, Dmin = 0 mm, Dmax = 4 mm, (6.13)

the glottis is fully closed in the configuration in figure 4(a). Figure 9 illustrates
the quasi-static approximation for the sound radiated towards the mouth when
f0 = 125 Hz and pI = 8 cm of water. The dotted and thin line curves, respectively,
show the separate contributions from the vortex sound superimposed on the mean
transmitted pressure pI and the vocal folds monopole. The waveform consists of a
succession of acoustic pulses separated by instances of zero amplitude.

Figure 10 depicts a similar prediction for the more usual case in which the glottis
(again defined by conditions (6.12) and the two-dimensional Zhao et al. (2002)
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Figure 10. As for figure 9 with f0 = 125 Hz and pI = 8 cm of water, but in the case where the
glottis remains closed during the first 30 % of each cycle, producing a succession of pressure
pulses separated by short intervals of ‘silence’.

model) is closed for a finite fraction of each cycle and varies as in figure 4 during
the remainder of the cycle. It is assumed that f0 = 125 Hz and pI = 8 cm of water,
but that the glottis is closed during the first 30 % of each cycle. Successive pressure
pulses are now separated by short intervals of ‘silence’. The maximum amplitude of
the vortex sound is unchanged from that shown in figure 9 because the net variation
in glottal area is the same; however, the contribution from the monopole is increased
because the volumetric changes of the folds occur more rapidly.

7. Conclusion
The sound produced by aerodynamic sources near a compact body, or near a

compact surface feature on a large boundary, is usually dominated by monopole and
dipole components. The monopole is absent for rigid bodies or for deformable bodies
of invariable volume. To make detailed predictions – as opposed to general order of
magnitude estimates – it is necessary to have an intimate knowledge of the source flow.
At low Mach numbers, it is usually permissible to ignore fluid compressibility when
investigating this near-field motion, which can then be ‘mapped’ into the radiating
sound by employing a suitable aeroacoustic Green’s function. Alternatively, lengthy
but nominally precise numerical treatments of the full equations of motion can be
used to predict the whole flow simultaneously, although many problems are too
complex even for the fastest of present day computers to make this practicable. Such
approaches also tend to be expensive, rarely supply predictions in a timely manner,
and frequently provide little of the insight required to formulate effective noise-control
procedures.

The recognition that the most efficient sources of sound at low Mach numbers are
generally associated with flow structures within compact regions of a larger flow has
encouraged the development of the compact Green’s function, and its extension in
this paper to deal with compact bodies that can deform in an essentially arbitrary
manner. Howe et al. (2006) have demonstrated how the application of this method to
low-frequency sound generated by a high-speed train can provide rapid and accurate
predictions in a case involving extensive non-compact source distributions, and where
a numerical treatment would consume tens or hundreds of hours of CPU time.
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Our discussion of voiced speech similarly permits a detailed interpretation to be
made of the different source mechanisms. The principal source is a dipole produced by
a nonlinear coupling of vorticity with the vocal folds; only vorticity within about one
glottal width of the folds was shown to participate effectively in this interaction. The
strength of the source is governed by the integral in equation (5.12b), which is actually
proportional to the hydrodynamic drag on the folds (Howe 1998, 2003; Stevens 1998,
p. 65; Biesheuvel & Hagmeijer 2006). This is in accord with the numerical conclusion
of Zhao et al. (2002), who deduced the dominance of vocal fold surface forces by
calculation of the sources contributing to the Ffowcs Williams – Hawkings (1969)
representation of the sound. The subsequent unstable development of the vortex wake
downstream of the glottis may, in practice, be responsible for ‘noisy’ interactions with
vocal tract appendages, but has little or no influence on voiced sounds, although
its quantification occupies a considerable fraction of computer time in a numerical
treatment.

The discussion in § 6 of a spanwise-elongated rectangular glottis is arguably more
realistic than the circular glottis considered by Zhao et al. (2002), but neither model
is ideal. An orifice bears little relation to the actual geometry, and the rectangular
glottis is acoustically too ‘transparent’. However, although no detailed measurements
of voice signals are available, the numerical predictions of Zhao et al. (2002) and
our waveforms presented in figures 8 to 10 are mutually consistent and in general
accord with typical voice signatures reported in the literature (e.g. Flanagan 1972;
Stevens 1998). The conclusion that voiced sounds are probably approximated well
by the quasi-static approximation (6.11) admits of the following generalization of the
formula for the acoustic-dipole pressure for a glottis of arbitrary shape

p(x1, t) =
Q(t − x1/c0)

(A/ρoco)

=

⎡
⎣ρoc

2
o

2

σAm(t)

A

⎛
⎝
√(

σAm(t)

A

)2

+
4pI (t)

ρoc2
o

− σAm(t)

A

⎞
⎠
⎤
⎦

t−x1/co

, (7.1)

where Q is the unsteady volume flux through the glottis (the ‘monopole’ source
strength of Fant 1960), pI (t) is the subglottal over-pressure applied to the vocal folds
and Am(t) is the minimum glottal cross-section at time t . The ratio A/ρoco is the
acoustic admittance of the vocal tract when modelled (as in this paper) as a uniform
semi-infinite duct (Lighthill 1978). A formula very like (7.1) has been examined by
Park & Mongeau (2007), who concluded from a series of measurements involving
convergent and divergent glottis-shaped orifices that the approximation is applicable
during about 70 % of a typical glottal cycle (a similar conclusion was drawn by Zhang
et al. 2002). However, a fully self-consistent application of the general method of this
paper to the vocal tract, with its complex system of formants, requires the derivation
of Green’s function in § 4 to be modified to take account of the radiation properties
(the admittance) of the vocal tract on either side of the glottis. The acoustic particle
velocity U would then satisfy a nonlinear, integro-differential equation (instead of
(6.5)), and the quasi-static approximation that corresponds to (7.1) would need to be
derived numerically.
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